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Abstract: The proportional plus integral plus derivative (PID) controller has been the mainstay of feedback 

control for decades even though there are slew of other controllers in the books. Simplicity, ease of use, and 

adequate performance are the lure of the PID. A major drawback of the PID is reliance on trial and error 

graphical tuning method such as the Ziegler-Nichols, Cohen-Coon, and Fertik. This article introduces the 

phase, gain, and damping (PGD) controller. By solving a system of nonlinear algebraic equations the designer 

obtains transfer functions with desired gain, damping, and phase at the closed loop bandwidth of the feedback 

system. This article also proposes a new method of tuning the PID controller parameters based on the PGD 

controller coefficients. This approach of using the PGD to tune the PID eliminates the need for cumbersome 

graphical tuning.  
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I. Introduction 

A functional block diagram of a feedback control system is shown in Fig. 1. The goal of feedback 

control is to find a controller )(sGc  which when combined with the given plant )(sG p  gives the feedback 

system desirable performance as measured by high bandwidth, acceptable damping, and low tracking and steady 

state errors to specified command inputs. Other performance measures include disturbance suppression as 

judged by the shape of the sensitivity functions, ample phase margin, 
030  minimum, [1], and a generous gain 

margin, typically 12 dB, [2]. Additional requirements such as rise time, settling time, and overshoot are 

functions of bandwidth and damping.  

 

 

 

 

 

 

 

 

Fig 1. A conceptual diagram of a feedback control system. 

 

Control system engineers have no discretion to alter )(sG p  but what can be done with )(sGc  to 

enable the system meet control requirements is limited by the designer’s control system knowledge. There are 

many feedback controller design schemes that promise to deliver the aforementioned performance benefits in 

one form or another. The linear quadratic regulator [3,4,5], linear quadratic Gaussian [6,7], the Luenberger 

observer [8], pole placement [1,9], and the H-infinity controllers [3,5] are well known. In practice, none of these 

controllers is as extensively used as the PID, because they have flaws which the latter doesn’t. The LQR, LQG, 

and pole placement are full state feedback controllers; and the observer (also known as estimator) is known to 

lack robustness [4,7], because the control law is a function of estimated states which may differ significantly 

from the plant’s states. The H-infinity controller is arguably the most prudent choice for multivariable systems 

but mastery of its design methodology calls for advanced courses in feedback control theory. Consequently, 

control system designers who are looking for uncomplicated, yet effective controllers, naturally reach for the 

PID, in spite of its trial and error tuning disadvantage.    

The Phase, Gain, and Damping (PGD) controller is introduced in this article. There are relationships 

between damping, zeros, poles, gain, phase, and the coefficients of a transfer function. These relationships are 

harnessed to formulate a set of equations whose solution yields transfer functions with specified gain, phase, and 

damping at the frequency of the closed loop system.  

command inputs
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This article is organized as follows. Section 1 is the introduction. Section 2 elucidates the formulation 

of the PGD controller. The PGD integrator is discussed in Section 3. There is a one-to-one correspondence 

between the PGD integrator coefficients and the PID controller parameters. This relationship is established in 

Section 4. Section 5 discusses how the high frequency gain and phase requirements can be relaxed to reduce the 

number of equations from five to four. Section 6 offers a design example. And Section 7 is the conclusion.  

 

II. The PGD Controller Formulation 
This formulation uses the location of the poles and zeros, phase angle, and controller gain to obtain a 

system of equations that describes the transfer function. A general equation of a monic proper n
th

-order transfer 

function has ( 12 n ) coefficients. In this aspect, for a second-order system, the transfer function is  

01

2

01

2

2
1 )(

asas

bsbsb
sg




         (1) 

Eqn. (1) has five coefficients: }0,,,,{ 01012 aabbb . The s-plane locations of the zeros of )(1 sg  

affect the phase margin, steady state error and bandwidth of the feedback system. Further, the zeros of the 

controller participate in shaping the poles of the closed loop system, which makes the location of the controller 

zeros critical. Let ), (1  . Eqn. (1) can be written as a ratio of two polynomials )(1 sN  (the numerator) 

and )(1 sD  (the denominator). Completing the squares on )(1 sN , we have:  
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Similarly, if 0
4 2

2

1
0 

b

b
b  then 01   exists such that 01 f . That is, the zeros of )(1 sg  are complex if 

01  , else they are real. So the choice of 1  enables the designer to make the zeros of )(1 sg  real or 

complex.  

The poles of a transfer function determine the magnitude of its damping factor. Let ), (2  . 

Completing the squares on )(1 sD  shows that a relation linking the damping of  )(1 sg  and its coefficients is 

given by 

04 2

2

102  aaf        (3) 

The transfer function )(1 sg  has real poles if 02  , else complex poles. That is, if 02  , there exist no 

coefficients 1a  and 0a  such that )(1 sg  has real poles.  If real, the poles of )(1 sg  become highly disparate as 

   2 , which is consequential because the location of controller poles affect the steady state error of the 

feedback system.   

The closed loop system bandwidth c  is a derived requirement, meaning that  c  is an offspring of some top 

level requirement given to the control engineer. A transfer function, )(1 sg , can be rationalized to separate it 

into real and imaginary parts so that the arctangent of the ratio of imaginary over real is the phase angle of 

)(1 sg .  Let )( cph   be the phase angle of )(1 jg  at the closed loop bandwidth c  . Also, let  

RIk cph /))(tan(0   , where  
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 The phase angle ],[)(  cph . Since positive phase angle (phase lead) and stable poles and zeros are 

desired, )( cph   is restricted to the open interval ),0(  . Therefore,  0I , and 00 Rk . Also, there 

exists 0, 43   such that  

0/ 033  kRf          (6) 

044  If         (7) 

Let  sk  be the controller gain at the closed loop system bandwidth, that is, )(1 cs jgk  . Then the 

coefficients of )(1 sg  and sk  are related as 
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The constants in eqns. (6), (7), and (8) are consolidated as follows.  
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For convenience of access, the equations are collected together thus: 
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300200211123 )(   babababbf      (9c) 

4100111124 )(   ababbabf       (9d) 
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The system of eqns. (9) is nonlinear and algebraic and its solution gives the coefficients of )(1 sg . Consider the 

function  TfffffF 54321 .  In terms of F, the system of eqns. (9) is written as  

0),( F          (10) 

where,  Taabbb 01012  are outputs, and  Tcs kk  04321  are 

inputs to be supplied by the designer.  

The Jacobian matrix (or matrix of partial derivatives) of eqn. (10) is 
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In particular,  

 00424/ 2101 bbbdf  ;   42000/ 12 adf  ; 

 21021110211013 1/ bbbaaadf   . 

And  df /4  and  df /5  are computed similarly. 

The steps for a numerical solution of eqn. (10) is as follows. 

Specify values for  .  

Assume an initial value  0  for  .  

Evaluate ),( F  and J .  

Evaluate FJError 1 , and the norm of Error ErrorNE  .  

  If 0  is a solution of eqn. (10), then 0),( 0 F  00  NE .  

Else, the updated value of   is Errorii  1 .  

Continue until 0NE  ∎ 

The actual value of 0  depends on how exact the solution is desired. Typically, 
7

0 10 . The 

initial condition is chosen arbitrarily and the algorithm converges quickly if    satisfies eqn. (10). An in-depth 

treatment of solutions of nonlinear equations is found in [10].  
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III. The PGD Integrator 

A controller )()( 1 sgsGc  , even when )(1 sg  has high DC gain, may not give acceptable steady 

state error and disturbance suppression. The primary usage of an integrator is to give the feedback system a 

desired system type to shape the tracking and steady state errors as the designer intends.  Assuming a second-

order system, the integrator block in the phase, gain, and damping controller is designed as follows. Let 

scs

dsds
sg
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with the unknowns }0,,{ 101 cdd . Then for ),(5     and ),(6  0 , and following the steps used 

in deriving eqn. (9),     
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The integrator is active at low frequency. Let )(2 LL gk  , cL   . In terms of Lk , L , 0d , and 1d ,   

eqn. (8) is re-written as  

 0)22()( 2

0

2

0

22

02

2

10

22

1

242

2

2

8  dakdbdakakbkf LLLLLL   (16) 

It is noted that eqn. (16) is for the general case of eqn. (1). For the special case of eqn. (12), 12 b , 00 a , 

and 
5.0

611  ca . Substituting these values in eqn. (16):   
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The coefficients 1d  and 0d  are obtained by solving  

  0),,,,( 501106  LL

T
kddHff       (19) 

The third coefficient  1c  is given by eqn. (15).  

 

IV. Tuning the PID Controller Parameters 
The PID is a well known controller and widely used in process and robotics industries and commercial 

controller hardware (Franklin et al, 2006). Beside graphical parameter tuning, feedback system designers 

frequently use software auto-tune environment to select PID parameters. The tuning algorithms used in these 

software are hidden to the users and as a consequence designers may lose sight of the engineering involved in 

the PID tuning. The PGD controller offers a formulaic approach to choosing the PID controller parameters, thus 

eliminating the need for graphical tuning. The transfer function of a PID controller is given by  
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      (20) 

where, PK . IK  and DK  are proportional, integral, and derivative gains, respectively, and the pole D  is 

inserted to make the controller proper and hardware implementable. Comparing eqns. (12) with (20), it is 

deduced that 

 1cD            (21) 

 10 / cdK I            (22) 
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Obtaining the PID controller parameters in terms of the PGD coefficients can proceed in one of two ways. In 

one approach, eqns. (15) and (19) are solved to find the coefficients },,{ 101 cdd  and then compute 

},,,{ DPID KKK . Alternatively, a control system designer may wish to tune the PID parameters based on 
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the PID phase angle at a specified frequency L . Following the exposition in sections 2 and 3, the set of 

equations whose solutions yield },,{ 101 cdd  are 
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10  ddfa        (25) 
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where,   
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The PID phase angle ]0,[  ph . Consider, for instance, the case where the designer wants the PID to have 

a phase angle of 
080  at  10L  rad/s, then 6713.5)180/80tan(0  k . Let 1.06   and 

23635  . Inserting these numbers in eqns. (25) to (27) the PGD coefficients are computed as 3162.01 c , 

76.491 d , and 38.280 d .  Then the PID parameters are obtained using eqns. (21) to (24). 

 

V. Discussions 
5.1     Relaxation of the High Frequency Gain Constraint 

Equations (9) represent the general case where phase and high frequency gain are regulated and there 

are five unknowns. The integrator has only three unknowns and that significantly simplifies the system of 

equations. In both equations (9) and (19), the DC gains of the transfer functions are not restricted so they can 

assume any values. If the constraint imposed on sk  is relaxed then eqn. (8) becomes irrelevant and the high 

frequency gain is no longer under the manipulation of the designer. In that case the DC gain, 0dk , must be 

fixed, and  00 akb d . This alternative is useful in obtaining transfer functions with unity DC gain where 

1dk . There are four unknowns in this case: }0,,,{ 0112 aabb ,  and eqn. (6) becomes 
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The system of equations similar to eqns. (9)  is 
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The weakness of eqns. (28), compared with eqns. (9), is that the high frequency gain is no longer influenced by 

the designer so it can take on any value. 

 

5.2     Restriction of the Phase Angle 

Another simplification of eqns. (9) can be achieved if, with fixed DC gain, )( cph   is restricted to the open 

interval )2/,0(  . In that case the constraint equations 0/ 03  kR   and 04 I  are replaced by 
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Hence the system of equations becomes 
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With eqns. (29) the designer can choose the value of the DC gain dk ; the high frequency gain sk ; and make the 

poles and zeros of )(1 sg  complex, real, and highly unequal. So the designer has a tool to obtain a truly tailor-

made transfer function. 

 

VI. The PGD Controller Design Example 
Let the transfer function of the controller be 

)()( 12 sggKsG Cc   

where, 1CK  is a controller gain needed to give the feedback system the required gain margin; and )(2 sg  

and )(1 sg , respectively, are of the forms of eqns. (12) and (1). For this example, 1CK . The input to be 

supplied is  Tcs kk  04321 . It is required that the controller provides a positive 

phase angle of 
0155  at the closed loop bandwidth frequency of 355  rad/s. From the given phase angle, 

4663.00 k ; and 355c . The designer reserves the discretion to choose 1 , 2 , 3 ,  4 , and  sk  to 

satisfy eqn. (10). Suppose the designer wants all the poles and zeros of )(1 sg  to be real, then 0, 21  . For 

this problem the following constants are chosen:  
10

1 108.1   and 22497002  . The inequality 

conditions on eqns. (6) and (7) demand that 0, 43  , so for this problem, 
15

43 105  . Finally, 

sk  is chosen as 66.14sk .   Inserting these numbers in eqn. (10) and solving numerically yields:   
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The designer also has the discretion in specifying the integrator. For this problem the variables were chosen as 

follows: 1.06  , 4.23635  , cL  10 , and 5Lk . Solving eqn. (19) the integrator block 

obtained is   

     
)3162.0(

9407.173474.49
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
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The transfer function )(1 sg  provides a phase lead of  
0155  at the closed-loop system bandwidth of 355  

rad/s. Fig. 2 is the Bode plot of the controller )(sGc  which is the product of )(2 sg  and )(1 sg .  The left axis 

is the magnitude and the phase is represented in the right axis.  

 
Fig. 2. A Bode plot of the controller with the left axis (solid plot)  as magnitude and right axis (dash plot) as 

phase. 
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VII. Conclusion 

A major shortcoming of the PID controller is its trial and error and graphical tuning methods. In 

contrast, the PGD controller, introduced in this article, empowers the control engineer to model the controllers 

precisely. This article also exhibits a formulaic approach to tuning the PID controller parameters. Solutions of 

sets of nonlinear algebraic equations yield transfer functions with gain, damping, and phase lead at the 

frequencies intended by the designer. This is important because feedback system stability and other performance 

requirements are met if the controller produces the right amount of phase, damping, and gain at appropriate 

frequencies. Other uses of transfer functions with specified phase lead are in tuned resonant circuits and 

communication networks to provide high quality factor, or correct phase lag introduced into the received signals 

by the communication channels.  

 

References 
[1]. G. Franklin, J. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, 5th edn., Prentice Hall, New Jersey, 2006.  

[2]. M. El-Hawary, Control System Engineering, Reston Publishing, Reston, Virginia, 1984. 

[3]. K. zhou, J. C. Doyle, K. Glover, Robust and Optimal Control, Prentice Hall, New Jersey, 1996. 
[4]. B. Anderson, J. Moore, Optimal Control: Linear Quadratic Methods, Prentice Hall, New Jersey, 1989.  

[5]. M. Green, D. J. N. Limebeer, Linear Robust Control, Prentice Hall, New Jersey, 1995. 

[6]. S. Skogestad, I Postlethwaite, Multivariable Feedback Control: Analysis and Design, John Wiley, New York, 2001. 
[7]. J. C. Doyle, G. Stein, Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis, IEEE Transactions on Automatic 

Control, vol. AC-20, (1981) pp. 4-16. 

[8]. G. Franklin, J. Powell, M. Workman, Digital Control of Dynamic Systems, 3rd edn., Addison Wesley, Menlo Park, California, 1998. 
[9]. T. Kailath, Linear Systems, Prentice Hall, New Jersey, 1980.  

[10]. J. Mathews, Numerical Methods for Mathematics, Science, and Engineering, 2nd  edn., Prentice Hall, New Jersey, 1992. 

 
 

 

 
 

 


